
Abstract. Free-energy perturbation calculations are
used to evaluate the free energy of cavity formation in n-
octanol. A detailed theoretical analysis of the procedure
is given and some limiting value phenomena are dis-
cussed. The data become subject to a three-parameter fit
and a revised formulation of the popular approach due
to Pierotti of calculating cavitation free energies is given.
Pierotti’s approach is based on the equation derived
from scaled particle theory (SPT) by Reiss et al. [(2000)
J. Chem. Phys. 31:369–380]. The revision of Pierotti’s
approach has the important advantage of being com-
pletely independent of the solvent hard-sphere radius, an
empirical parameter in the standard procedure, which is
hard to define in a uniformly valid way.
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1 Introduction

Embedding a molecule in a solvent may be formally
considered a two-step process. The initial step creates an
empty space inside the solvent, which then shall be
occupied by the molecule in question – the solute. The
second step consists of switching on all the intermolec-
ular interactions that occur at the solute/solvent bound-
ary. While basic physical principles may be applied in
solving for the second part [1], the initial process of
creating a void of appropriate shape and size to
accommodate the solute still poses a major challenge
to the theoretical as well as to the practicing physical
chemist of today. In this context the enormous advan-
tage coming along with bare theoretical approaches
must be highlighted again, since only these have – at

least in principle – the power to describe such a rather
artificial scenario properly. Any experimental approach
would most likely fail, because this molecular volume –
the cavity – really needs to be perfectly empty, but
experimentally observed cavities, for example, from
surface tension data, are not. Indeed, it has long been
realized that, for example, the cavitation free energy in
water could successfully be obtained from employing
one such barely theoretical technique, namely free-
energy perturbation (FEP) [2] in combination with
molecular dynamics (MD) simulation which nowadays
appears to be a standard methodology [3]. Recently the
authors of the present article have re-evaluated the MD/
FEP approach for the calculation of free energies
required to create perfectly empty cavities in various
solvents [4, 5]. The main findings of these studies may be
summarized as follows:

– Little or practically no dependence on the force field
parameters.

– Discouraging disagreement with the analytical model
of Pierotti [6], especially for the standard set of solvent
hard-sphere radii used, for example, in a standard
quantum chemistry program [7]. However, rather
close similarity between the MD/FEP results with
surface tension data [8] was observed.

– A transformation property was identified when con-
verting any arbitrary molecular volume to a perfectly
spherical one and employing the MD/FEP data for
the latter. Thus, with the help of this transformation
property the rather theoretical process, which was
originally reserved for the creation of an empty
sphere inside a solvent only, immediately becomes
suitable for real-world solvation problems too, which
usually deal with molecular shapes that are far from
perfectly spherical.

– The MD/FEP data may be interpolated with a
polynomial expansion of up to second-order terms
and thus gives rise to a ‘‘revision of Pierotti’s
approach’’ (rPA) which reads

DGcav ¼ k0 þ ðk1BÞ þ ðk2B2Þ; ð1Þ
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with B being the effective radius of the volume-
equivalent representative sphere of the molecule and
k0; k1 and k2 data tabulated in Ref. [5].

Previous work on the important issue of hydro-
phobic solvation has been carried out by Pohorille and
Pratt [9, 10], Hummer et al. [11], Ashbaugh and
Paulaitis [12] and Floris et al. [13], to mention just a
few names.

Oneof the simplestways to calculateDGcav energies has
been devised byPohorille andPratt [9, 10], where the focus
was on evaluating the statistical occurrence of transient
cavities – of limited maximum size – that are obtained
during plain MD or Monte Carlo (MC) simulations. The
simulation data formed the basis for a probability distri-
bution of solvent molecules to enter a certain volume.
Thus, the probability of finding exactly zero solvent
molecules in a certain volume (transient cavity) could be
related to the chemical potential of a hard-sphere solute
dissolved in the solvent. While limited to rather small
cavities, it must be noted that this approach is heavily
dependent on the particular choice of model parameters
used for the description of the solvent (e.g., compare the
two water models employed in Ref. [9]; Figs. 3, 6).

An extension towards larger cavities was pioneered
by the observation that the probability distribution of
having exactly n solvent molecules in a confined cavity
volume forms a quasi-parabolic function, which, sur-
prisingly, may be further parameterized from nonphys-
ical information theory models with a clear preference
for a very simple two-moment flat-model [11]. The
extrapolation to the zero-solvent-molecule probability
then again connects the simulation data with actual
cavitation free energies. However, as already mentioned,
the strong intrinsic dependence on the absolute micro-
scopic validity of model parameters adjusted to repro-
duce solvent properties in the macroscopic domain
remains the critical issue here.

Another interesting distinction concerning dewetting
and rewetting in the first hydration shell of solutes has
been described by Ashbaugh and Paulaitits [12]. For
extension towards nonaqueous cavitation free-energy
calculations and alternative semiexperimental ap-
proaches see Refs. [14, 15, 16] and references therein.

Free-energy calculations have already been recom-
mended by Floris et al. [13] to provide one of the most
accurate ways of estimating the cavitation energy. In
that study MC smulations were used and cavities up to a
hard-sphere radius of 5 Å were analyzed. Despite the
finding of a convincing correlation between scaled par-
ticle theory (SPT) and FEP results, the major critical
dependences were identified to be the choice of an
appropriate hard-sphere radius for the solvent and the
definition of the relationship between soft-sphere radii
and the corresponding hard-sphere values.

In the present article, we restrict ourselves to the re-
port of how to accurately compute the cavitation free
energy in n-octanol, which forms a major contribution
to the net solvation free energy. In the next section, we
briefly recall basic theoretical concepts. Then a detailed
description of computational parameters is given. We
present the results in the following section and discuss

them in detail before summarizing the main findings in
the conclusion.

2 Theory

In order to account for the effect of creating a perfectly
empty cavity inside an ‘‘equilibrated structure of n-
octanol’’ a repulsive potential (Vrep) of the type

Vrep ¼ k
B�

r

� �12

ð2Þ

was introduced at the origin of the simulation box that
contained the n-octanol molecules. The parameter B� in
Eq. (2) defines the maximum radius of the final repulsive
sphere and r is the distance between any of the atoms of
all the molecules of n-octanol and the origin of the
repulsive cavity. It is important to note that B� in this
form is given in units of (kcal/mol)

1
12Å and thus facilitates

the connection between a repulsive radius and the energy
penalty due to repulsion. In analogy to Postma et.al. [2],
however, we prefer to switch to a description of cavity
dimensions that does not involve any units of energy and
thus allows us to envision the cavity as a pure spatial
construct. Therefore for the remainder of the paper we
shall make use of the reduced quantity ‘‘thermal cavity
radius’’, which we shall refer to as B, given in reduced
units of angstroms, where at a certain cavity dimension
the corresponding ‘‘thermal radius’’ gives a repulsive
action of exactly 1.0 kcal/mol. In a way the reduced
quantities B may be considered as the cavity’s bound-
aries at which an intruding particle would actually start
to ‘‘feel’’ the acting repulsive potential and owing to
the steepness of the potential this effect would grow
rather rapidly the further the particle enters the cavity’s
space. Furthermore the variable k in Eq. (2) is a
dimensionless scalar parameter in the range 0 � k � 1
characteristic to all free energy calculations. It smoothly
introduces the perturbation as it is modified from k ¼ 0
(unperturbed state) to k ¼ 1 (fully perturbed state).
At some particular intermediate value of ki, a corre-
sponding free-energy change due to a small perturbation
ki þ dk is given by Zwanzig’s formula[17]

DGðkiÞ ¼ �kBT ln e�
1

kBT HðkiþdkÞ�HðkiÞ½ �
D E

ki

; ð3Þ

where < > depicts a thermodynamic average, for
example, as obtained from some MD trajectory sampled
including a ki-fold contribution of the potential given by
Eq. (2), kB is the Boltzmann constant, T is the absolute
temperature, H means the total energy of the system,
and the average is built at ki with small perturbative
variations dk around ki. It is important to note that the
perturbations should not exceed an upper-limit value
which is on the order of kBT (at least within the FEP
framework). If this criterion is violated, one needs to
split the perturbation again into smaller increments of ki.
Finally, the net change in free energy is given by the sum
over all incremental changes;

DGk¼0!1 ¼
X

i

DGðkiÞ: ð4Þ
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In this context it is of interest to note that we split the
whole approach into two parts (DGcav;1 þ DGcav;2),
where the first one considered the early onset of a
repulsive cavity (kB ¼ 0! 1 Å), while the second part
was concerned with the extension of the already
established primary cavity (kB > 1 Å). The reason for
this distinction comes from the need to employ a
modified repulsive potential in the small cavity regime
owing to the apparent singularity in Eq. (2) when B�

approaches 0 [18,19], in particular

V mod
rep ¼

kn

0:3ð1� kÞ2 þ r
B�¼1:0
� �6h i2 ; ð5Þ

with n having been set to 12. A graphical representation
of the modified potential of Eq. (5) is given in Fig. 1.

Referring to the pioneering work of Postma et al. [2] a
further generalization of the free energy expression of
Eq. (3) must be recalled. Within the so-called overlap-
ping spheres technique (OST) [2] the emphasis in defin-
ing the repulsive cavities is shifted from working with
various k-scaled radii of one single maximum value of B�

to a whole set of precisely fixed and individual values of
repulsive radii B�i . In this sense both these worlds are
entirely complementary because each repulsive radius B�i
has one corresponding ki that generates itself by scaling
the maximum radius B� appropriately – B�i ¼ kiB�.
Hence a similar expression to Eq. (3) within OST when
using a Vrep of the type of Eq. (2) therefore reads

DGiðjÞ ¼ �kBT ln e
� 1

kBT

Pnatoms

k

ðB�
i
þjDBÞ12�ðB�

i
Þ12

ðrk Þ12

* +
B�i

j 2 f�25;�24;�23; . . . ; 0; . . . :; 23; 24; 25g; ð6Þ
where h iB�i again means an average over a trajectory
recorded with the inclusion of an extra potential term of

the type of Eq. (2) at some constant value of B�i . The
perturbations now come into play. At each of the time
steps of the MD simulation one computes deviations,
with respect to B�i , that consider the induced energy
change if B�i had suddenly become B�i þ ðjDBÞ, with a
very small incremental value of DB and j adopting
negative as well as positive integral numbers, thus
enabling an increase as well as a decrease of the
repulsive cavity set as B�i . Our choice of having used
exactly 25 positive and negative values for j in Eq. (6) is
arbitrary. The important fact to realize is that when
another trajectory is recorded, for example, employing a
repulsive cavity radius of B�iþ1 ¼ B�i þ ð25DBÞ, then one
obtains 25 different possibilities from the FEP results to
estimate the free energy required to increase the
repulsive cavity radius from B�i to B�iþ1. These additional
25 possible ways of calculating the same value for
DGcav;i!iþ1 naturally combine corresponding j-pairs
within the overlapping region, for example,
DGið1Þ þ DGiþ1ð�24Þ or DGið2Þ þ DGiþ1ð�23Þ, etc. In
principle, all of them should result in the same value. In
reality, they do, however, differ slightly and these
variations provide a perfect basis to estimate the
numerical error of the method.

A similar expression to Eq. (6) but now for the early
onset of a cavity (0 Å� Bi � 1 Å) where the repulsive
potential is of the type of Eq. (5) is defined by

DGiðjÞ ¼ �kBT ln*
e

� 1
kBT

Pnatoms

k

ai

biþ
rk

1:0þðjDBiÞ

� �6
� �2�

ai

biþ
rk
1:0ð Þ6

	 
2+
B�i

j 2 f�25;�24;�23 . . . ; 0; . . . 23; 24; 25g; ð7Þ

Fig. 1. Modified repulsive van
der Waals potential [18] em-
ployed for small cavities of radii
Bi � 1:0 Å (in the text this is
referred to as the early onset
domain, DGcav;1). The intent is to
avoid the apparent singularity
arising from the use of the
standard repulsive van der Waals
potential of type ðBi

rk
Þ12 when Bi

tends to 0.0 Å and thus rk – the
distance between an atom and
the cavity’s center – might
become 0.0 Å too. The plot
shows the shape of all the eight
different potentials that were
actually used in each of the
initial eight simulations starting
with Bi ¼ 0:5 Å (e.g., k ¼ 0:5)
and reaching up to Bi ¼ 1:0 Å
(e.g., k ¼ 1:0), where finally the
connection to standard van der
Waals is re-established
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where DB now is varied, because the overlapping regions
for adjacent B�i have become asymmetric and one needs
to carefully combine corresponding j values between
subsequent B�i and B�iþ1 trajectories. Furthermore, sev-
eral subterms in Eq. (5) are adsorbed into parameters ai
and bi, which are all represented in Table 1.

3 Computational

All MD trajectories were computed with the TINKER program
version 3.9[20, 21] using MM3-2000 parameters[22]. The NPT type
of thermodynamic ensembles was modeled at 1.0 atm pressure with
the pressure-coupling method due to Berendsen et al. [23], which
accounts for box-size changes that naturally occur when the volume
of the repulsive cavity is introduced. Initially a cubic box composed
of 6� 6� 6 grid cells was set up, where the volume of one of these
grid elements was determined from the number density of n-octa-
nol. A single optimized structure of n-octanol centered at the origin
was periodically translated and copied to each of the centers in
these sub-cells. The initial simulation box contained a total number
of 216 n-octanol molecules and was roughly dimensioned to
reproduce the experimental density at T ¼ 300K (q ¼
0:8262 g=cm3). Periodic boundary conditions were applied and a
cutoff distance of 14.0 Å was used for non-bonded-type interaction
potentials. The system was minimized and subsequently subjected
to a simulated-annealing procedure, where the following protocol
was used: 2000 steps of 1.0 fs each, starting with random velocities
leading to a system temperature of 1000K and using a linear
cooling algorithm to finally end up at a system temperature of
300K. The change in volume during this initial simulated annealing
run was less than 1% compared with the box dimensions upon
start-up.

Individual trajectories were recorded for 100 ps each, the time
step was 1.0 fs, the initial 25 ps was always used for equilibration,
bond lengths involving hydrogen were held constant via the
RATTLE algorithm[24] and the FEP terms shown in Eqs. (6) and
(7) were computed in each of the time steps, thus every femtosec-
ond.

An initial set of eight trajectories was produced using the po-
tential of Eq. (5) at the following values of k 0.5, 0.6, 0.65, 0.67, 0.7,

0.8, 0.9, and 1.0, from which it becomes clear that in this initial run
(DGcav;1), where the maximum value of B was set to 1.0 Å, all the
individual k values can be directly taken as explicit Bi values. The
choice for this particular set of ks had its reasons in the effect that
they actually smooth out the singularity at Bi ¼ 0 Å (Fig. 1). All
parameter details of the modified potential are summarized in
Table 1.

In addition, 16 more trajectories were recorded with a potential
of the type of Eq. (2) at explicit values of Bi set to 1.08, 1.16, 1.24,
1.32, 1.40, 1.48, 1.56, 1.64, 1.72, 1.80, 1.88, 1.96, 2.04, 2.12, 2.20,
and 2.28 Å. For this latter set of calculations (DGcav;2) a constant
value of DB ¼ 0:0032 Å was used to compute the �25 perturba-
tions according to Eq. (6).

A maximum allowed perturbation of 2 kBT was used through-
out and any results exceeding that threshold were discarded. Final
averages for a certain j perturbation away from the reference cavity
radius Bi had to exhibit a failure rate of less than 1% in order to be
taken into account.

Following philosophy of the Postma et al. [2], all the actually
employed repulsive radii were scaled by a multiplicative factor of
1.117548 that accounts for transformations to thermal radii fol-
lowed by conversion to hard-sphere radii.

4 Results and discussion

MD/FEP data for the cavitation free energy in n-octanol
are shown in Table 2 and Fig. 2. As outlined earlier the
procedure allows a rigorous estimation of the numerical
error and thus error bars and lower/upper bounds are
included in Table 2 and Fig. 2. Because the approach is
inherently additive, the error grows with increasing
cavity size. The data were interpolated with a second-
order polynomial (see Eq. 1, koctanol0 ¼ 0:331,
koctanol1 ¼ �0:962, koctanol2 ¼ 0:708) with a root-mean
square of residuals of 0.011 using the Marquardt–
Levenberg method [25, 26] as implemented in GNU-
PLOT version 3.7 [27]. Extension beyond the simulated
B domain to larger cavity sizes using this polynomial is
also shown in Fig. 2.

In order to estimate the uncertainty of the approach
with respect to the ‘‘solvent structure’’ the data were
analyzed a second time taking into account an initial
equilibration interval of 40 ps instead of 25 ps. It is as-
sumed that the solvent structure between two adjacent
cavity simulations has then become even more disperse,
because the solvent molecules have had even more time
to relax and move around their cavity to find some
agreeable configuration to accommodate them. In so
doing we obtain another fit of kcheck0 ¼ 0:362,
kcheck1 ¼ �1:008, kcheck2 ¼ 0:721, which differs from the
original by only 8.4%, 4.6%, and 1.8% with notably
increasing stability for the more significant k2 coefficient.
From this we conclude that the procedure is numerically
stable and does not depend on arbitrarily chosen starting
geometries.

Restriction of the power-series expansion to maximal
quadratic terms gives rise to a rPA, which does not de-
pend on any particular choice of a hard-sphere radius
for n-octanol, which has been reported to be the main
problematic aspect of the standard Pierotti approach
(PA) [28, 29, 30, 31].

In order to justify the generalization of the second-
order polynomial fit into the medium-to-large cavity
domain, several more free-energy calculations were

Table 1. Modified potential parameters – Eqs. (5) and (7)

k ¼ B�i Formula ðai; biÞ DBi +/) Perturbative terms

0.5 0:000244

0:075þ ð r
1:0Þ

6
h i2 0.004 0:000244

0:075þ ð r
1:0þðj�0:004ÞÞ

6
h i2

0.6 0:002177

0:048þ ð r
1:0Þ

6
h i2 0.0034 0:002177

0:048þ ð r
1:0þðj�0:0034ÞÞ

6
h i2

0.65 0:005688

0:037þ ð r
1:0Þ

6
h i2 0.0012 0:005688

0:037þ ð r
1:0þðj�0:0012ÞÞ

6
h i2

0.67 0:008183

0:033þ ð r
1:0Þ

6
h i2 0.0018 0:008183

0:033þ ð r
1:0þðj�0:0018ÞÞ

6
h i2

0.7 0:013841

0:027þ ð r
1:0Þ

6
h i2 0.0057 0:013841

0:027þ ð r
1:0þðj�0:0057ÞÞ

6
h i2

0.8 0:068720

0:012þ ð r
1:0Þ

6
h i2 0.005 0:068720

0:012þ ð r
1:0þðj�0:005ÞÞ

6
h i2

0.9 0:282430

0:003þ ð r
1:0Þ

6
h i2 0.0045 0:282430

0:003þ ð r
1:0þðj�0:0045ÞÞ

6
h i2

1.0 1:000000

0:000þ ð r
1:0Þ

6
h i2 0.004 1:000000

0:000þ ð r
1:0þðj�0:004ÞÞ

6
h i2
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carried out for a different case using the TIP3P [32]
potential of water and AMBER-6 [33]. These results will
be the subject of a future communication. These calcu-
lations considered a pseudo-particle of arbitrarily scaled
size that vanishes in the course of the free-energy

calculation. The cavity size range was B = 2.4 — 10.0 Å.
Interestingly enough the data obtained in this manner
could be very well reproduced by the second-order
polynomial fit of the MD/FEP data reported in Ref. [4]
which is an identical approach to the one presented here
except that the solvent considered there was water. As a
consequence it seems to be sufficient to employ a rigor-
ous MD/FEP study for small cavities and to derive a
good interpolation from those data in order to accu-
rately describe cavitation free energies in general. In so
doing one may go far beyond the cavity range covered
by MD/FEP in the first place.

An attempt towards verification and realization of
the standard PA approach is represented in Fig. 3. Here
the calculated MD/FEP data were taken and the most
appropriate values for the hard-sphere radius of n-oct-
anol were derived at all points from backward substi-
tution into the equation used by Pierotti, which
historically dates back to the work of Reiss et al. [34].
Furthermore, the B range was extended towards larger
cavities using the second-order polynomial outside the
range directly covered by MD/FEP. As becomes clear
from Fig. 3, the critical property of the solvent hard-
sphere radius comes close to the standard value of
3.425 Å [35], but it never really converges to a constant
value throughout the entire region. Thus, ideally one
would have to make the hard-sphere radius dependent
on the cavity size in order to use the standard PA right
away. On the other hand, instead of always deriving a
most appropriate hard-sphere radius for any given
problem, one could equally well stick to directly using
Eq. (1).

In contrast to the standard PA, in the MD/FEP-
derived rPA, the cavitation free energy is only a function
of the cavity radius B, rather than a function of the ratio
between the solute hard-sphere radius and the solvent

Fig. 2. Free-energy perturbation
results for cavity formation in
n-octanol (red) and approximate
extension via a second-order
polynomial fit (blue) as a
function of the cavity size

Table 2. Cavitation free energies for growing spheres of radii B in
n-octanol as obtained from free-energy perturbation calculations
including the confidence interval

B (Å) DGcav

kcal
mol

� � Lower
DGcav

bound
kcal
mol

� �
Upper
DGcav

bound
kcal
mol

� �

0.558774 0.000000 0.000000 0.000000
0.670529 0.002000 0.001600 0.002600
0.726406 0.004900 0.003300 0.008700
0.748757 0.008700 0.006700 0.014600
0.782284 0.015400 0.013400 0.026700
0.894039 0.049400 0.044100 0.073000
1.005793 0.091000 0.078100 0.124000
1.117548 0.148200 0.129700 0.181600
1.206952 0.211600 0.189100 0.246000
1.296356 0.281800 0.246100 0.326400
1.385760 0.348400 0.306700 0.394800
1.475164 0.439600 0.386700 0.491100
1.564568 0.550700 0.489300 0.605400
1.653971 0.659000 0.580200 0.738800
1.743375 0.785500 0.683500 0.878200
1.832779 0.949800 0.841800 1.042800
1.922183 1.109100 0.985600 1.216100
2.011587 1.276800 1.150400 1.385900
2.100991 1.435800 1.289100 1.565000
2.190395 1.623500 1.446600 1.774800
2.279799 1.831400 1.638900 1.992300
2.369202 2.031700 1.828600 2.200000
2.458606 2.248300 2.031500 2.418900
2.548010 2.464700 2.230100 2.644000
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hard-sphere radius. In addition, B exhibits an important
transformation property via the solvent excluded
volume, V slv:xcl [4]. In detail, this means that for any
regularly shaped molecular cavity, which usually is non-
spherical, one may always deduce an effective value of B
suitable for direct application of Eq. (1) by simply tak-
ing into account the solvent excluded volume, such as
Beff ¼ 3

4p V slv:xcl
� �1

3. The great advantage is that this is
always the same – at least approximately – no matter
which particular value has been assigned to the probe
sphere radius that formally acts as the analogue to the
solvent hard-sphere radius in most of the commonly
employed molecular surface generation algorithms [36,
37, 38].

Another interesting hint of the validity of using a
power series truncated after the quadratic term is the
fact that it adopts Neumann’s rule [39] of converging to

a constant ratio of B1

B2

� �2
for growing cavity pairs B1 and

B2 in all kind of solvents.
A further important consequence of using a second-

order polynomial fit for the DGcav data obtained from
MD/FEP calculations is that at large cavity sizes DGcav

scales with the cavity surface; hence, surface tension data
might prove useful in providing an alternative estimate
to the net cavitation free energy for large systems [40].

Finally, working with a second-order polynomial fit
for the DGcav data obtained from MD/FEP calculations

Fig. 4. Ratio between cavitation
free energies in water and n-
octanol – DGH2O

cav : DGn�Octanol
cav –

for growing cavity sizes

Fig. 3. Molecular dynamics (MD)/Free-en-
ergy perturbation (FEP)-derived solvent
hard-sphere radius for n-octanol. The data
obtained from MD/FEP (together with the
corresponding second-order polynomial in
the Bi range beyond the directly covered
space) were taken as a basis and solvent
hard-sphere radii were deduced via back-
ward substitution into the equation used by
Pierotti and originally derived from scaled
particle theory by Reiss et al. The plot
indicates that one would have to go to fairly
large cavity sizes (x-axes) to assume a
constant value of the solvent hard-sphere
radius (y-axes) as is implicit in Pierotti’s
approach. Upper and lower bounds to the
MD/FEP data led to the curves shown
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instead of the equation used by Pierotti [6] and originally
derived from SPT by Reiss et al. [34] also implies that
one has omitted the final term appearing in this equa-
tion. This term deals with the pressure dependence, pdV ,
and thus would not pose any problems with small cav-
ities since the change in volume must be considered small
there. Its neglect for larger cavities is not obvious and
was the subject of independent investigations [40].

As far as the log P value is concerned it might be of
interest to show the trend for the ratio between DGwater

cav
and DGoctanol

cav . This is certainly just a subset of the overall
effect, but still can give important insight into the com-
plex relationship of the relative contributions to solva-
tion free energies. The ratio between DGwater

cav and
DGoctanol

cav is plotted in Fig. 4 (rPA coefficients for water
taken from Ref. [5], kwater0 ¼ 0:823, kwater1 ¼ �2:034,
kwater2 ¼ 1:283). One can clearly see how even for med-
ium-sized cavities the water term becomes a constant
multiple of the octanol cavitation. In the limit of large B
values, the ratio is mainly given by the relationship be-
tween the k2 coefficients, which is 1:283=0:708 ¼ 1:81.
Thus for molecules with an effective B radius of 10:0 Å
and above, the water cavitation seems to be 1.8 times as
large as the octanol cavitation. However, the cavitation
effect (positive DG) is usually counterbalanced by the
polarization (and dispersion) effect (negative DG), which
is much larger in water, because of its largely increased
dielectric constant: e20 ¼ 80 in water versus e20 ¼ 10 in
octanol. In any event, the proper computation of the net
solvation free energy requires as accurate as possible
estimates of the individual partial terms independently
and therefore the present data can serve to improve the
quality of solvation free-energy calculations in n-octanol
significantly.

5 Conclusion

FEP calculations obtained from MD simulations have
been used to approximate the cavitation free energy in n-
octanol. The data were interpolated by a power-series
expansion truncated at the quadratic term, which gave a
rPA. This revised version of the equation used by
Pierotti and originally derived from SPT by Reiss et al. is
not sensitive to any particular choice of the solvent hard-
sphere radius in n-octanol and may be directly applied to
any arbitrary molecular system via the solvent excluded
volume. The present results are not only of interest to
theoretical approaches that describe the solvation effect
in general, but also may have a significant impact on the
estimation of log P values, an important property to
characterize the bio-availability of potential drug sub-
stances in different tissues.
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